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Gr   upSM
Azacytidine Enhances Efficacy of Tyrosine 

Kinase Inhibitors in Aml Cells

ABSTRACT
Background:  Azacytidine (5-Aza) is a chemotherapeutic drug used for DNA-de-methylation 

resulting in re-expression of silenced tumor suppressor genes (TSG). Epigenetic silencing of TSG 
is mediated by DNA methylatransferases (DNMTs) in several tumors and has been reported 
to play important roles in leukemogenesis. Cancer formation could be avoided by inhibition of 
DNMTs and over expression of TSG. Re-expression of TSG such as SHP-1 and SOCS-3 is inversely 
proportionate with STAT3 signaling. 

Lestaurtinib (CEP-701) and midstaurin (PKC-412) are multi-targeted tyrosine kinase 
inhibitors (TKI) that potently inhibit FLT3 tyrosine kinase and induces hematological remission 
in AML patients. However, resistance to both TKI is recorded in majority of AML patients in 
clinical trials. Therefore, the aim of this study, was to assess the effect of 5-Aza on re-expression 
of TSG and sensitivity response to CEP-701 and PKC-412 in resistant AML cells 

Methods: Resistant cells were developed by overexposure of MV4-11 cells to CEP-701 and PKC-
412, individually and treated with 5-Aza. Cytotoxicity of both TKI and apoptosis were determined 
using Annexin V and MTS assays, respectively. Gene expression profiling using microarray and 
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real time-PCR, STATs activity was examined using Western blot and methylation status of SHP-
1, SOCS-1, SOCS-3 and PRG2 was determined by methylation specific-PCR and pyrosequencing 
analysis. 

Results: Cytotoxic doses of CEP-701 and PKC-412 on MV4-11cep+5-Aza and MV4-11pkc+5-
Aza cells were significantly decreased compared with resistant cells. There was significant 
hypomethyaltion (p=0.002) in CPG islands of SHP-1 and PRG, associated with their re-expressions.  
The higher sensitivity to TKI was associated with STAT3 inactivation in 5-Aza treated cells 
compared with their resistant cell lines.  

Conclusion: 5-Aza enhances efficacy of TKI in AML cells and treatment with 5-Aza followed 
by PKC-412 or CEP-701 could provide suitable candidates for further investigates to underline 
alternative options for the treatment of AML patients with FLT3-ITD.
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INTRODUCTION
Leukemia is a hematological malignancy characterized by accumulation of malignant leukocytes 

in bone marrow and peripheral blood (Hoff brand et al, 2011). It occurs due to serial mutational 
events such as amplification, point mutations and specific chromosomal translocations forming 
fusion genes resulting excessive proliferation and differentiation impairment of progenitor cells 
[1,2]. However, mutational events are not the only cause of leukemia or other cancers but also 
epigenetic silencing of tumor suppressor genes (TSG) has been reported to play important roles 
in leukemogenesis. 

Epigenetic silencing due to hypermethylation of CPG islands is a frequent mechanism of 
inactivation of tumor suppressor genes (TSG) in a variety of human cancers including AML [3]. 
DNA methylation is an epigenetic modification that acts as regulators of gene expression [4]. DNA 
Methylatransferases Genes (DNMT) encode enzymes that are responsible for methylation by 
stimulating the transfer of methyl group to cytosine resulting in 5-methylcytosine [5]. In human 
cells, DNA methylation is caused by DNMT1, DNMT3a (DNMT3α) and DNMT3b (DNMT3β) [6-9]. 

Up-regulation of DNMT1 and DNMT3a or DNMT3b has been recorded in several cancers; 
stomach cancer [10], breast cancer [11], pancreatic cancer [12], hepatic cancer [13], cervical 
cancer [14] and AML [15]. The over expression of DNMT1 was associated with poor prognosis. 
However, repression of DNMT1 expression results in inhibition of proliferation in cancer cells, in 
vitro and in vivo [16-19]. 

Azacytidine (5-Aza) and 5-Aza-2-deoxycytidine (5-Aza2dc) are strong inhibitors of DNMTs 
and used as chemotherapeutic drugs that induces DNA de-methylation and approved to be the 
standard care for patients with myelodysplastic syndromes (MDS) [20,21]. Treatment with 5-Aza 
and cytotoxic anticancer drugs exhibits synergistic activity in AML and NSCLC cells [22]. 
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Fms-like tyrosine kinase-3 (FLT3) is a member of type III RTK that plays important roles in 
cell survival, proliferation, and differentiation during normal hematopoiesis [23]. Primarily, FLT3 
is expressed on immature myeloid and some lymphoid hematopoietic progenitors cells [24,25] 
and in majority (70-100%) of AML and B-ALL patients [26,27]. Mutations of FLT3 are found in 
30% of AML patients. These mutations include FLT3-ITD, that results in constitutive activation in 
many signaling pathways such as STAT, MAP kinase and AKT pathways [28-31].  Therefore, TK 
kinase such as FLT3 is important targets in the treatment of human cancers including AML. 

Current treatment of AML relies on remission induction (induction) with cytosine arabinoside 
(Ara-c) and anthracycline followed by consolidation (post-remission therapy) with additional 
intensive chemotherapy or stem cell transplantation [32,33]. Most of AML patients (50-90%) 
relapse with negative complications due to chemotherapies resulting in a significant higher 
morbidity and mortality, particularly in elderly patients [28, 34-37]. Therefore, the development 
of alternative less toxic and more specific therapy for such patients is vitally needed. The success 
of tyrosine kinase inhibitors (TKI) in CML encourage searching for such small molecule inhibitors 
to treat AML patients. Subsequently, several TKI that potentially and specifically target tyrosine 
kinases such as FLT3, KIT and PDGF have been developed as alternative option for AML patients 
[38, 39].

 CEP-701 and PKC-412 are TKI that specifically target FLT3 and showed advancement in 
clinical trials for AML patients [40,41]. However, acquired resistance to these TKI is reported 
in majority of AML patients in third phase of clinical trials  [40,42]. JAK/STAT pathway is one of 
signaling network that plays critical role in various cell biological activities including immune 
response, cell growth and differentiation [43-45]. Normally, JAK/STAT pathway transmits signals 
to hematopoietic stem cells in bone marrow for hematopoiesis in response to stimuli such as 
erythropoietin (EPO), thrombopoietin (TPO), growth hormone and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) [46-48]. In addition, JAK/STAT signaling regulates critical 
cellular proliferation, differentiation and apoptosis [49]. Moreover, in normal cells, STATs 
proteins are activated by receptor-associated JAK kinases resulting in nucleus translocation for 
transcription. Hence, the STATs phosphorylation and progression of signals transduction are JAK 
dependent [50]. 

However, deregulations of JAK/STAT signaling were reported in many cancers including 
hematological malignancies [51-54]. FLT3 mutations cause constitutive activation of STATs that 
enhances leukemogenesis [55-57]. Additionally, FLT3-ITD mutations are associated with poor 
prognosis [58]. The activated signaling pathways result in uncontrolled proliferation, impairment 
of differentiation and enhance cell survival [27]. Furthermore, the activation of STAT signaling 
pathways plays roles in development of resistance to TKI such as ABT-869 [59]. On the other 
hand, the inhibition of JAK/STAT signaling results in suppression of cells proliferation and induces 
apoptosis in various cancer [60-62].
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JAK/STAT signaling is negatively regulated by; protein tyrosine phosphates (PTP) such as 
SHP-1 gene, suppressors of cytokine signaling (SOCS) and protein inhibitors of activated STATs 
(PIAS) [63-67]. However, JAK/STAT negative-regulators have been shown to have low activity due 
to epigenetic silencing in cancers [68]. Additionally, JAK/STAT signaling is frequently activated in 
several cancers including AML due to methylation of SHP-1 promoter region [69]. SHP-1, SOCS-1 
and SOCS-3 function as TSG [70-72]. The TSG have been shown to be inactivated due to aberrant 
methylation in leukemia, lymphoma and multiple myeloma [73,74]. Moreover, over expression of 
bone marrow proteoglycan 2 (PRG2) was absent in methylated cancer cells and its re-expression 
by 5-Aza2dc induced apoptosis in pancreatic cancer cell lines [75]. 

In this study it was hypothesized that, inhibition of DNMT by 5-Aza de-methylating agent 
could enhance TSG re-expression and confer sensitivity responses to TKI in myeloid resistant 
cells. Therefore, gene expression profiling, methylation analysis and cytotoxicity with apoptosis 
assays were studied before and after treatment of resistant cells with 5-Aza. 

MATERIALS AND METHODS
Lestaurtinib (CEP-701) and Midostaurin (PKC-412) were purchased from LC Laboratories 

(Woburn, MA, USA) and dissolved in DMSO before use. The stock preparation was 1 mM for each 
TKI, which was stored at −20°C according to the manufacturer’s protocol.

Development of Resistant Cells

AML cell line with FLT3-ITD (MV4-11) was obtained from Department of Hematology, 
UniversitiSains Malaysia (USM), having originally been purchased from American Type Culture 
Collection (ATCC). The cells were cultured with RPMI 1640 (Life Technologies, Grand Island, 
NY, USA) supplemented with 10% fetal bovine serum (FBS; Life Technologies, Grand Island, 
NY, USA) at a density of 5 × 104 cells/mL in a humid incubator with 5% CO2 at 37°C. Resistant 
cell line to CEP-701 and PKC-412, namely MV4-11R-cep and MV4-11R-pkc, respectively were 
developed according to the protocol described previously [76]. Briefly, log phase growing MV4-
11 cells were co-cultured at a starting dose of 20 nM TKI followed by a step-wise increase in 
concentration of 10–20 nM for 12 months until the cells were able to survive at the IC50 dose of 
each TKI on parental MV4-11. The resistant cell lines were grown in normal medium without TKI 
for at least 48 h before starting the experiments.

Azacytidine Treatment

Azacytidine (5-Aza; Sigma-Aldrich Corp, MO, USA) was dissolved by injecting the vial of 
5-Aza (1.2 mg) with 10 ml RPMI-1640 media and the stock concentration was 500 µM for use 
immediately or stored at -20°C to be used within 2-3 days. Five µM was prepared as working 
solution by adding 1 ml 5-Aza stock preparation to 99 ml complete media. Resistant cells were 
sub-cultured in working solution (5 µM) and incubated in a humid incubator with 5% CO2 at 
37°C for 4-5 days until confluent. The resistant cells that treated with 5-Aza were designed as 
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MV4-11R-cep+5-Aza and MV4-11R-pkc+5-Aza cells and sub-cultured in normal media without 
treatment for at least one passage before re-treatment with CEP-701 or PKC-412.

Growth Inhibition Assay

MV4-11 cells were seeded in 96-well culture plates at a density of 1 × 104 viable cells/100 
μL/well in triplicates, and were treated with CEP-701 and PKC-412 individually. Colorimetric 
Cell Titer 96 Aqueous One Solution Cell Proliferation assay (MTS Assay; Promega, Madison, 
WI, USA) was used to determine the cytotoxicity’s of each TKI. The IC50 values were calculated 
using Graph Pad Prism 3.02 (San Diego, California, USA). Each experiment was performed in 
triplicate.

Apoptosis Assay

Annexin V–FITC binding assay (BD Pharmingen, San Diego, California, USA) was used 
as recommended by the manufacturer and analyzed by flowcytometry (BD FACSCanto™, San 
Jose, California, USA). Analysis was performed with Diva software (FACS Diva, 6.1.2, San Jose, 
California, USA). Each experiment was performed in triplicate.

RNA Extraction

Total RNA was extracted from all cell lines [MV4-11, MV4-11R-cep, MV4-11R-cep+5-Aza, 
MV4-11R-pkc and MV4-11R-pkc+5-Aza] using the Rneasy® Mini Kit (Qiagen, Valencia, 
California, USA), the purity and concentration was measured with a NanoDrop ND-1000 
spectrophotometer V3.3.0 (NanoDrop Technologies, Berlin, Germany).

Gene Expression Profiling

The Prime ViewTM Human Gene Chip Arrays were used for gene expression profiling according 
to the manufacturer’s protocol (Affymetrix, Santa Clara, California, USA).  Briefly, first-strand 
cDNA was synthesized from total RNA and the cDNA was converted into a double-stranded DNA 
template for transcription. 

Scanning and data analysis

The Gene Chip arrays were scanned using Gene Chip® Scanner 3000 (Affymetrix) and the 
analysis was performed using Agilent’s Gene Spring GX software 12.1. One way ANOVA was 
conducted and two-fold change used as criteria to determine the expression. The data were 
further analyzed by Functional Annotation Tool DAVID Bioinformatics Resources 6.7, NIAID/NIH 
(http://david.abcc.ncifcrf.gov). JAK/STAT family members and genes involved in methylation 
were our interest in this study. Therefore, KEGG_pathway functional annotation table and gene 
ontology (GO) annotations related to methylation were studied. After notification that, PRG2 gene 
showed the highest fold changes in all 5-Aza treated cells, GO related to carbohydrate binding 
were added to the interested genes to look for the expression.
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Quantitative Real Time-PCR (RQ-PCR)

High Capacity RNA-to-cDNA kit (Applied Biosystem, Foster City, California, USA) was used 
to synthesize cDNA according to the manufacturer’s protocol. TaqMan Gene Expression assays 
(Applied Biosystems) were performed on an Applied Biosystem 7500 Fast Real-Time PCR 
System according to the manufacturer’s protocol. Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as an internal control. ABI 7500 software v2.0.6 (Applied Biosystem) was 
used to validated the expression of 4 interested genes, SHP-1,SOCS-1, SOCS-3 and PRG2  in all cell 
lines using the comparative threshold cycle (Ct) method.

DNA Extraction

DNA was extracted from all cell lines using the NucleoSpin® Tissue kit (Macherey-Nagel, 
Düren, Germany) following the manufacturer’s instructions. The concentration and purity of 
DNA were measured by NanoDrop.

METHYLATION-SPECIFIC POLYMERASE CHAIN REACTIONS (MS-
PCR)

One microgram of DNA was treated with bisulfate using the EZ DNA Methylation-Gold™ Kit 
(Zymo Research, Irvine, NY, USA) according to the manufacturer’s instructions. MS-PCR was 
performed as described previously [77] and modified DNA was subjected to two separate PCRs. 
MS-PCR primers were designed to amplify the methylated (M) or un methylated (U) alleles. SHP-
1 (Gene Bank: NM_002831) was amplified using previous designed primers [78]. Universal 
methylated DNA (Zymo Research, Irvine, NY, USA) was used as a positive control. The 50-μL 
PCR reaction contained 200 ng of bisulfate-treated DNA, Reddy Mix PCR master mix (Bioline 
Ltd., London, UK) and 0.2 μM of each primer. PCRs were performed in a thermal cycler (PTC-
200, Alameda, California, USA). The amplified PCR products were denatured for 2 min at 95°C 
followed by 40 cycles: 95°C for 25 s, 59°C for 35 s, 52°C and 72°C for 65 s, and extension at 72°C for 
5 min. PCR products were electrophoresis on 2% agar’s gels, and visualized by ethidium bromide 
staining under ultraviolet transillumination. Results from triplicate experiments were used to 
determine methylation status.

Pyrosequencing Analysis

As mentioned in published work [79, 80], 20 µL (1 µg) of purified DNA from each sample were 
sent to EpigenDx (Hopkinton, MA, USA) for pyrosequencing analysis of SHP-1 and PRG2 genes 
after 5-Aza treatment. The assays were designed to target 6 and 4 CPG islands in the promoter 
regions of the SHP-1 and PRG2 genes, respectively.

Western Blot Analysis

Protein from all cell lines was extracted by RIPA buffer (Sigma-Aldrich, MO, USA), described 
in published work MV4-11, MV4-11R-cp, MV4-11R-cep+5-Aza, MV4-11R-pkc and MV4-11R-
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pkc+5-Aza cell lines were incubated with 300 nM CEP-701 and PKC-412, accordingly for 3 
days before protein extraction. Bio-Rad protein dye (Bio-Rad, Hercules, California, USA) 
and a spectrophotometer (BioPhotometer Plus, Eppendorf, Germany) were employed for 
the measurement of protein concentrations. Preparation of immunoblotting was performed as 
described previously [81]. Antibodies used were anti-STAT1, anti-p-STAT1, anti-STAT3, anti-p-
STAT3, anti-STAT5, anti-p-STAT5, and anti-β-actin (Thermo Scientific, Waltham, MA, USA).

Statistical and Bioinformatics Analysis

Repeated-measures ANOVA and Kruskal–Wallis tests were employed for statistical analyses. 
All statistical analyses were performed using the SPSS software package (Version 20, SPSS, and 
Armonk, NY, USA) and a p value <0.05 was considered as significant. For microarray results 
analysis, Agilent’s GeneSpring GX software 12.1 was used and one way ANOVA test was applied 
and a minimum 2 fold change was used as criteria to determine the expression. Further analysis 
was performed using DAVID Functional Annotation Bioinformatics Microarray Analysis 6.7, 
NIAID/NIH. The modified Fisher Exact P-value was generated from DAVID Functional Annotation 
Bioinformatics Microarray Analysis and the adjusted p value ≤ 0.1 was considered as significant. 

Results

Higher sensitivity to CEP-701 and PKC-412 in 5-Aza treated cells

The MTS assay showed a significant decrease in the IC50 of CEP-701 (p= 0.002) and PKC-
412 (p= 0.003) on MV4-11R-cep+5-Aza and MV4-11R-pkc+5-Aza cells, respectively compared to 
other cells (Figure 1a and b).

Figure 1: Cell growth inhibition by CEP-701 and PKC-412 on parental and resistant cells 
before and after 5-Aza treatment. a) Depicts the IC50 of CEP-701 on MV4-11, MV4-11R-cep 

and MV4-11R-cep+5-Aza cell lines. MV4-11R-cep cells show a significant higher cytotoxic dose 
of CEP-701 compared to other cells (p=0.002). However, MV4-11R-cep+5-Aza cells display 

the lowest cytotoxic dose. There is no significant difference in the cytotoxic dose of the drug 
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between MV4-11 and 5-Aza treated cells (p=0.066). b) The IC50 of PKC-412 on MV4-11, MV4-
11R-pkc and MV4-11R-pkc+5-Aza cells. The cytotoxic dose of PKC-412 on MV4-11R-pkc cells 
shows a significant higher compared with MV4-11 and MV4-11R-pkc+5-Aza cells (p=0.003). 

However, there is no significant difference in the IC50 between MV4-11 and MV4-11R-pkc+5-
Aza cells. The outlier value marked as *2.

However, the resistant cells displayed the highest cytotoxic doses of CEP-701 and PKC-412. 

Higher Apoptosis in 5-Aza Treated Cells

The results showed a significant increase in the apoptosis in MV4-11R-cep+5-Aza cells 
compared to MV4-11 and  MV4-11R-cep cells based on CEP-701 concentration (F= 23.48, p= 
<0.001) (Table 1). In contrast, the results showed a significant increase in the apoptosis in MV4-
11R-pkc+5-Aza cells compared to other cells based on PKC-412 concentration (F= 33.55, p= 
<0.001) (Table 2).

Table 1: Comparison of mean apoptotic cells % in cells based on CEP-701 concentration.

CEP-701 concentration [nM] Cell lines Mean percentage of apoptotic cells 95% CI

100 

MV4-11
MV4-11R-cep

MV4-11R-cep+5-Aza

13.51
10.50
26.03

11.77, 15.25
8.59, 12.41
23.33, 28.72

200 

MV4-11
MV4-11R-cep

MV4-11R-cep+5-Aza

32.07
15.19
45.70

29.27, 34.86
12.13, 18.25
41.37, 50.03

300

MV4-11
MV4-11R-cep

MV4-11R-cep+5-Aza

56.46
22.85
64.55

51.06, 61.86
16.93, 28.77
56.18, 72.92

Repeated measure ANOVA between group analysis with regard to concentration was applied. 
Assumptions of normality, homogeneity and compound symmetry were checked and were 
fulfilled.

There was a significant difference of mean percentages of apoptotic cells among three cell 
lines based on CEP-701 concentration (F = 23.48, p<0.001). MV4-11R-cep+5-Aza cells show the 
highest apoptosis at all drug concentrations. However, MV4-11R-cep cell lines display the lowest 
apoptosis.
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Table 2: Comparison of mean apoptotic cells % in cells based on PKC-412 concentration.

PKC-412 concentration [nM] Cell lines Mean percentage of apoptotic cells 95% CI

100 

MV4-11
MV4-11R-pkc

MV4-11R-pkc+5-Aza

11.67
3.75

15.30

10.849, 12.486
2.931, 4.569

14.481, 16.119

200 

MV4-11
MV4-11R-pkc

MV4-11R-pkc+5-Aza 

18.87
7.53

26.03

17.197, 20.538
5.855, 9.195

24.362, 27.703

300 

MV4-11
MV4-11R-pkc

MV4-11R-pkc+5-Aza

47.07
13.10
58.77

45.007, 49.128
11.039, 15.161
56.707, 60.828

There was a significant difference of mean percentages of apoptotic cells among three cell 
lines based on PKC-412 concentration (F = 33.55, p<0.001). MV4-11R-cep+5-Aza cells show the 
highest apoptosis at all drug concentrations. The highest apoptosis was seen in 5-Aza treated cells 
at all drug concentrations. However, the resistant cell lines display the lowest apoptosis.

RESTORATION OF SHP-1 AND PRG2 GENES EXPRESSION IN 5-AZA 
TREATED CELLS

To investigate the correlation between re-expression of TSG and de-methylation, gene 
expression profiling using microarray was performed followed by RQ-PCR. 

Microarray results revealed 1987 of 7227 (27.5%)  genes and 1693 of 6382  (26.5%) genes 
involved in KEGG_pathway and demonstrated down-regulation  in MV4-11R-cep+5-Aza and  
MV4-11R-pkc+5-Aza cells, respectively compared to their resistant, MV4-11R-cep and MV4-11R-
pkc cells. Interestingly, 41 genes of these genes are involved in JAK/STAT signaling and showed 
down-regulation, except  SHP-1 was up-regulated in both  MV4-11R-cep+5-Aza and  MV4-11R-
pkc+5-Aza cells compared to their resistant MV4-11R-cep and MV4-11R-pkc cells, respectively 
(Figures 2a and b). 
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Figure 2: JAK-STAT signaling diagram in MV4-11R-cep+5-Aza and MV4-11R-pkc+5-Aza cells. 
It displays down-regulation of most genes in JAK/STAT signaling (red stars) in; a) MV4-11R-

cep+5-Aza cells and b) MV4-11R-pkc+5-Aza cells compared to MV4-11R-cep and MV4-11R-pkc 
cells, respectively. However, SHP-1 and few other genes are not down-regulated in both 5-Aza 

treated cells, by DAVID online software (http://david.abcc.ncifcrf.gov/).

On the other hand, GO annotation  revealed a significant up-regulation of PRG2 gene with the 
highest fold changes, 93 and 114.55 times higher in MV4-11R-cep+5-Aza and MV4-11R-pkc+5-Aza 
cells, respectively compared to other cells(Table 3).Furthermore, to validate the re-expression 
of SHP-1 and PRG2, RQ-PCR was performed and the results showed significant up-regulation of 
both genes in MV4-11R-cep +5-Aza cells and MV4-11R-pkc+5-Aza cells compared to other cells, 
published work [79, 80] and Figure 3a and b.
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Figure 3: Depicts results of RQ-PCR in parental, resistant and 5-Aza treated cells. The results 
revealed marked re-expression of SHP-1 and PRG2 genes in 5-Aza treated cells compared 

with other cells.KruskalWllis Test was applied followed by Multiple Mann-Whitney Test with 
Bonferruni correction. a) SHP-1shows a significant re-expression in MV4-11R-pkc+5-Aza 

compared to MV4-11 and MV4-11R-pkc cells (p=0.001).b) PRG2re-expressed with the highest 
fold changes (56 times higher) in MV4-11R-cep+5-Aza cells compared to MV4-11 and MV4-11R-

cep cells (p=0.002).

INHIBITION OF DNA METHYLTRANSFERASE IN 5-AZA TREATED 
CELLS

Gene Ontology also showed 46 and 50 genes display a significant down-regulation (p<0.001) 
in MV4-11R-cep+5-Aza cells compared with MV4-11 and MV4-11R-cep cells, respectively and are 
involved in methylation (data not shown), including DNMTS (DNMT1, DNMT3a and DNMT3b), 
Table 3. The results also revealed significant down-regulation of DNMT3a and DNMT3b (p<0.001) 
in MV4-11R-pkc+5-Aza compared with MV4-11R-pkc cells (Table 3). 

Table 3: Down-regulation of DNMTs and up-regulation of PRG2 in MV4-11R-pkc+5-Aza cells.

Comparison ID Gene Symbol Regulation Fold Change

MV4-11R-cep+5Aza VS MV4-11R-cep 

1786 DNMT1 down-regulated 10

1788 DNMT3a down-regulated 4.87

1789 DNMT3b down-regulated 28.98

5553 PRG2 up-regulated 93

MV4-11R-pkc+5Aza VS MV4-11R-pkc

1788 DNMT3a down-regulated 2.35

1789 DNMT3b down-regulated 23.29

5553 PRG2 up-regulated 114.55
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Low Methylation of SHP-1 and PRG2 Gene in 5-Aza Treated Cells

The results of MS-PCR showed partial methylation of SOCS-1, SOCS-3 and SHP-1 in MV4-11 
and resistant, MV4-11R-cep and MV4-11R-pkc cells (data not shown). However, after treatment 
with 5-Aza, only SHP-1 and PRG2 were re-expressed markedly. Therefore, further analysis using 
pyrosequencing was applied for re-expressed genes and revealed higher methylation of the CPG 
islands in the promoter region of SHP-1 and PRG2 genes in parental and resistant cells. However, 
there was a significant lower methylation of CPG islands of both genes after treatment of resistant, 
MV4-11R-cep and MV4-11R-pkc cells with 5-Aza (Table 4).

Table 4: Percentage of methylation of CpG islands in the promoter region of SHP-1 gene.

Sample ID CpG-11 CpG -10 CpG -9 CpG -8 CpG  -7 CpG-6 Mean Min Max

MV4-11 22.4 48.8 74.0 59.9 51.6 44.5 50.2 22.4 74.0

MV4-11R-cep 11.2 19.9 56.1 53.7 41.5 37.9 36.7 11.2 56.1

5-Aza treated cells 4.9 4.2 6.1 6.2 5.5 1.5 4.7 1.5 6.2

MV4-11R-pkc 36.5 34.0 56.6 42.7 38.8 30.7 39.9 30.7 56.6

5-Aza treated cells 4.7 12.0 14.2 13.1 13.5 8.4 11.0 4.7 14.2

Low Meth Control 6.8 6.9 2.7 10.5 8.3 5.9 6.8 2.7 10.5

Med Meth Control 52.2 53.0 52.1 42.7 48.4 49.1 49.6 42.7 53.0

High Meth Control 93.7 94.0 92.5 74.5 83.3 93.8 88.6 74.5 94.0

Pyrosequencing analysis showing methylation levels of 6 CpG islands of SHP-1 gene. It 
demonstrates low methylation in CpG islands of SHP-1 in 5-Aza treated cells compared with other 
cells.

The results showed no significant difference in methylation levels of CPG islands in the 
promoter region of SHP-1 and PRG2 gene in MV4-11 compared with MV4-11R-cep+5-Aza cells 
and  MV4-11R-pkc+5-Aza cells (Figure 4) and published work [79, 80].



13Myeloid Malignancies  | www.smgebooks.com
Copyright  Johan MF.This book chapter is open access distributed under the Creative Commons Attribution 4.0 
International License, which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited. 

Figure 4: Low methylation of SHP-1 and PRG2in MV4-11R-cep+5-Aza and MV4-11R-pkc+5-
Aza cells.Pyrosequencing analysis describesmethylation levels of CpG islands in the promoter 

region of SHP-1and PRG2. Kruskal–Wallis test was applied followed by the Multiple Mann–
Whitney Test with Bonferroni correction. The box blot shows significant lower of methylation 
in CpG islands of a)SHP-1(p=0.002) inMV4-11R-pkc+5-Aza cells and, b)PRG2(p=0.015)inMV4-
11R-cep+5-Aza cells, respectively compared with other cells.However, there was no significant 

difference in the methylation levels of CpG islands of SHP-1(p=0.150) and PRG2(p=0.149)in 
MV4-11 cells compared with MV4-11R-cep cells.

STAT3 Inactivation in 5-Aza Treated Cells

In published work, [79, 80] it was found that only STAT3 activated in resistant cells. However, 
it was inactivated after treatment of resistant cells with 5-Aza.

DISCUSSION
Azacytidine (5-Aza) is a strong inhibitor of DNMT that has been known to restore the expression 

of TSG by de-methylation and shown clinical efficacy in MDS [82-84]. It is an important option in 
the treatment of MDS/AML patients [85] and currently being used in UK for the treatment of some 
adults with MDS, CML and AML [86]. Initial results from a phase 1/2 study of combination of PKC-
412 and 5-Aza in refractory or relapsed AML reveals good response with a complete remission 
rate of 25% and 20% of patients achieving complete remission with incomplete platelet recovery 
[87]. CEP-701 and PKC-412 are the most intensively studied TKI that have shown advancement in 
clinical trials of AML patients [40, 41]. However, acquired resistance to CEP-701 and PKC-412 has 
been documented in vitro and in vivo [40, 42, 59, 88-91]. Therefore, this study aimed to assess the 
effect of 5-Aza on re-expression of TSG and sensitivity to TKI in resistant AML cells. 

Tumor formation could be avoided by inhibition of DNMT due to hypo-methylation and 
reactivation of silenced TSG [92-94]. The tumor suppressor genes have been shown to be 
inactivated due to aberrant methylation in leukemia, lymphoma and multiple myeloma [73, 74]. 
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DNMT1 is one of the target genes in cancer therapy because suppression of DNMT1 results in de-
methylation and re-expression of TSG [12, 95]. 

Epigenetic silencing of TSG is mediated by DNA methylatransferases (DNMT) in several tumors 
[6-9]. Up-regulation of DNMT has been recorded in several cancers, stomach [10], breast [11], 
pancreatic cancer [12], hepatic cancer [13], cervical cancer [14] and AML [15]. In accordance, 
the results of the present study indicate marked expression of DNMT in MV4-11, MV4-11R-cep 
and MV4-11R-pkc cell lines. The findings also revealed association of DNMT expression with 
hyper-methylation of SHP-1, SOCS-1, SOCS-3 and PRG2 genes in these cell lines. These findings 
are in agreement with previous reports in which, up-regulation of DNMT1 or DNMT3b results 
in transcriptional silencing of TSG due to hypermethylation [96-98]. Over expression of DNMTs 
could play roles in the pathogenesis of leukemia through aberrant hypermethylation [99]. 

In the published work, STAT3 showed activation in MV4-11R-cep and MV4-11R-pkc resistant 
cells in association with transcriptional silencing of SHP-1, SOCS-1, SOCS-3 and PRG2 [79, 80], 
suggesting critical roles of epigenetic silencing of these TSG in the activation of STAT3. This is 
consistent with previous reports in which, epigenetic silencing of SOCS-1, SOCS-2 and SOCS-3 is 
involved in the activation of STAT signaling (Zhou et al., 2009). Transcriptional silencing of one 
component of JAK/STAT negative regulators is sufficient for activation of STAT signaling (Johan 
et al., 2005) and epigenetic methylation of SHP1 contributes in the constitutive activation of 
STAT3 [100]. In addition, low level of SHP-1 is not sufficient to inhibit activated STAT3 [101] and 
transcriptional silencing of SHP-1 contributes in development of resistance to imatinib in BCR-
ABL1-positive CML cells [102]. Moreover, the activation of STAT3 is an essential mechanism of 
imatinib resistance Bewry, et al. [103].

In similarity, over expression of PRG2 in myeloid cells blocked G-CSF-dependent proliferation 
and increased apoptosis [104]. However, epigenetic silencing of PRG2 is associated with higher 
proliferation and lowered apoptosis in pancreatic cancer cells [105] and leukemic cells [80]. 
Therefore, it could be suggested that, up-regulated DNMT in MV4-11R-cep and MV4-11R-pkc 
cells methylate SOCS-1, SOCS-3, SHP-1 and PRG2 genes resulting in their transcriptional silencing 
and activation of STAT3.

On the other hand, after treatment of resistant cells with 5-Aza, there was a significant down-
regulation (p<0.001) of DNMTs in 5-Aza treated cells compared to untreated MV4-11, MV4-11R-
cep and MV4-11R-pkc cells. These findings were consistent with that previously reported, OCI-
AML3 and resistant CML (K562-R) cell lines treated with 5-Aza or 5-Aza2dc result in marked 
down-regulation of DNMTs [86,106]. Additionally, 5-Aza2c induced hypo-methylation in AML cell 
lines and patient blasts with re-expression of p15INK4b [107].

In similarity, the results of this study revealed higher sensitivity response to TKI after treatment 
of resistant cells with 5-Aza. These findings are in accordance with that reported by Nishioka, et 
al. [106], 5-Aza increases sensitivity response to dasatinib and nilotinib in resistant K562-R. 
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In the present study, gene expression results revealed also a significant re-expression of SHP-1 
and PRG2 in MV4-11R-cep+5-Aza and MV4-11R-pkc+5-Aza cells that was associated with higher 
apoptosis and lower proliferation. These findings were in agreement with previous findings in 
which, re-expression of SHP-1, SOCS-1, SOCS-2 and SOCS-3 is associated with higher apoptosis and 
lower proliferation after treatment resistant cell with a de-methylating agent [59, 90]. Moreover, 
knocking down of DNMT1and DNMT3b resulted in re-expression of TSG and growth inhibition of 
cells with higher apoptosis in several cancers [12, 18, 19, and 96].

Furthermore, restoration of expression of SHP-1 and PRG2 was associated with STAT3 
inactivation and apoptosis induction with higher sensitivity to TKIs; these findings are supported 
by that documented by Witzig, et al. [30], re-expression of SHP-1 results in inactivation of STAT3in 
diffuse large B cell lymphoma. Over expression of PRG2 inhibits cells proliferation and induces 
apoptosis [104].The inactivation of STAT3 induces apoptosis and reverts sensitivity to TKIs [103, 
108]. 

Collectively, up-regulation of DNMT could play critical role in the acquisition of resistance to 
TKI through methylation of TSG resulting in inhibition of suppressor functions and activation of 
STAT3. However, repression of DNMT by 5-Aza reverts higher sensitivity response to TKI and re-
expression of SHP-1 and PRG2 genes with inhibition of STAT3, Table 5.

Table 5: Percentage of methylation of CpG islands in the promoter region of PRG2 gene.

Sample ID CpG -6 CpG -5 CpG -4 CpG  -3 Mean Min Max

MV4-11 50.8 46 45.1 43.5 46.3 43.5 50.8

MV4-11R-cep 24.5 24.6 32.3 47.4 32.2 24.5 47.4

MV4-11Rcep+5-Aza 2.4 2.6 9.0 10.4 6.1 2.4 10.4

MV4-11R-pkc 58.5 34.5 48 46.5 46.9 34.5 58.5

MV4-11Rpkc+5-Aza 4.7 2.7 11.7 14.4 8.4 2.7 14.4

Low Meth Control 2.3 2.6 1.2 1.3 1.9 1.2 2.6

Med Meth Control 46.8 39.5 25.8 26.7 34.7 25.8 46.8

High Meth Control 96.7 85.3 49.3 50.4 70.4 49.3 96.7

It demonstrates methylation levels of 4CpG islands of PRG2 gene and shows low methylation 
in CpG islands of PRG2 in 5-Aza treated cells compared with other cells.

In conclusion, our findings support the hypothesis that TSG such as SHP-1 and PRG2 would 
lose their tumor suppressor function due to epigenetic silencing and their re-expression might 
enhance sensitivity responses to TKI. Thus, 5-Aza followed by PKC-412 or CEP-701 could provide 
suitable candidates as alternative option for the treatment of AML patients.
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